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It is shown that the Darwin equations, which describe the effect of multiple Bragg reflexion in mosaic crys- 
tals and have previously been obtained by heuristic arguments, arise naturally in a systematic solution of 
the neutron transport equation. With a method similar to that developed for calculating multiple-scattering 
corrections for neutron inelastic scattering in liquids, an approximate expression for the secondary 
extinction factor is obtained, which is applicable to a crystal of arbitrary size and shape. The results are 
compared with exact results for a plane slab, with Hamilton's [Acta Cryst. (1963), 16, 609-611] results for a 
cylinder and with Becker & Coppens's [Acta Cryst. (1974), A30, 129-147] results for a sphere. 

1. Introduction 

The conventional theory of neutron diffraction in 
mosaic crystals (Bacon, 1962) is based on equations 
which were originally constructed by Darwin (1922) by 
heuristic arguments for the analogous X-ray problem. 

.... For many years only the plane-slab solutions of these 
equations were discussed (Darwin, 1922; Zachariasen, 
1945; Lonsdale, 1947; Bacon & Lowde, 1948; Chan- 
drasekhar, 1960; Bacon, 1962; James, 1965). However, 
in more recent years there has been increasing interest 
in finding approximate numerical and analytical solu- 
tions for other crystal shapes in order to obtain accurate 
secondary extinction factors for use in crystal-struc- 
ture refinements (Hamilton, 1957, 1963; Zachariasen, 
1963, 1965, 1967a, b; Coppens & Hamilton, 1970; 
Cooper & Rouse, 1970; Becker & Coppens, 1974a, b, 
1975; Thornley & Nelmes, 1974; Werner, 1974). 

In the present article the theory of neutron diffrac- 
tion in mosaic crystals is discussed within the frame- 
work of neutron transport theory. This has two advan- 
tages over the conventional approach. Firstly, it 
provides a more rigorous derivation of the Darwin 
equations by demonstrating how these equations arise 
in a systematic solution of the neutron transport 
equation. Secondly, it shows that the transmission fac- 
tors which govern the multiple Bragg reflexion in 
mosaic crystals are special cases of more general 
transmission factors which also govern multiple diffuse 
scattering processes in macroscopic bodies. Thus, for 
example, we show that the approximate theory of 
multiple inelastic scattering in liquids, which we have 
recently developed (Sears, 1975a), can also be applied 
to the calculation of secondary extinction corrections 
for Bragg reflexion in mosaic crystals. 

We begin in § 2 by constructing the neutron transport 
equation with a collision integral appropriate to a 
mosaic crystal. We then show how this equation can 
be decoupled to yield a system of homogeneous equa- 
tions for the transmitted and Bragg-reflected beams, 
which we call the generalized Darwin equations, plus 

an inhomogeneous equation for the diffusely scattered 
neutrons. The solution of the former equations deter- 
mines the transmissivity and Bragg reflectivity while 
the solution of the latter equation determines the 
double differential cross-section for diffuse scattering. 
In § 3 we obtain general multiple scattering expansions 
of the transmissivity and reflectivity for the two-beam 
case where the generalized Darwin equations, men- 
tioned above, reduce to the ordinary Darwin equa- 
tions. The corresponding multiple-scattering expan- 
sion of the secondary extinction factor is obtained in 
§4. Finally, in §5, an approximate expression for the 
terms in the latter expansion is developed which leads 
to a simple, closed expression for the secondary extinc- 
tion factor and is applicable to a crystal of arbitrary 
size and shape. The results are compared with exact 
results for a plane slab, with the results of Hamilton 
(1963) for a cylinder and with the results of Becker & 
Coppens (1974a) for a sphere. 

2. Neutron scattering in a mosaic crystal 

In this section we present a general discussion of 
neutron scattering in a mosaic crystal of arbitrary 
size and shape. We assume for simplicity that the 
mosaic structure is macroscopically homogeneous, 
though not necessarily isotropic, and that the linear 
dimensions of the mosaic blocks are sufficiently small 
that primary extinction can be neglected. In this case, 
the neutron distribution inside the crystal is governed 
by the neutron transport equation which, for steady- 
state conditions, assumes the form (see, for example, 
Sears, 1975a) 

[k.V +Z(k)]f(r,k)=fdk'F(k',k)f(r,k'). (2.1) 

Here f(r,k) is the phase-space distribution function 
which is defined such that f(r,k)drdk is the average 
number of neutrons in the volume element dr with 
wave vector in dk. Also, k denotes a unit vector in the 
direction of k and V is the gradient operator. Z(k) is 
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the total collision cross-section per unit volume for a 
neutron with wave vector k. Finally, F(k',k) is the 
transference function which governs the scattering of a 
neutron from k' to k. 

In the present context 

S(k)=  ~ Zh(k) + S'(k), (2.2) 
h e 0  

in which the sum runs over all reciprocal-lattice points 
h except the origin and Z'h(k) is the cross-section per unit 
volume for Bragg reflexion via the reciprocal lattice 
vector Kh. The residual term S'(k) is the cross-section 
per unit volume for all collisions other than Bragg 
reflexion, i.e. absorption and diffuse scattering. The 
most important property of Zh(k) is that it is appre- 
ciably different from zero only if k satisfies Bragg's 
law, i.e. 

~'h(k) 0 unless k 1 2 ~-- . K h ~_ ~ 2 K h .  (2.3) 

The transference function can likewise be expressed as 

r(k',k)= Z Sh(k')b(k '-k-Kh)+r'(k ' ,k) ,  (2.4) 
h e 0  

in which U(k', k) denotes the contribution from diffuse 
scattering. 

We assume the crystal is completely bathed in a 
collimated, monoenergetic beam of incident neutrons 
each with wave vector ko. We want to find the corre- 
sponding solution of equation (2.1) at all points r 
inside the crystal and for all wave vectors k. We con- 
sider a trial solution of the form 

f ( r , k ) = ~  nh(r)g(k-kh)+f'(r,k), (2.5) 
h 

in which no(r) is the neutron number density in the 
transmitted beam with wave vector ko and, for h-C0, 
nh(r) is the neutron number density in the beam which 
is Bragg reflected via the reciprocal-lattice vector K h 
and has wave vector kh=ko--Kh. Finally, f ' (r ,k)  is 
the phase-space distribution function for the diffusely 
scattered neutrons. The number of Bragg-reflected 
beams with non-vanishing number density nh(r) will, 
of course, depend on the value of the incident-neutron 
wave vector k0 as discussed below. 

Substituting the trial solution (2.5) into (2.1) we find 
that 

{[l%.V+S(kh)]nh(r)-- ~ Zh-h,(kh,)nh,(r)}6(k--kh) 
h h'(g:h) 

+ {[l~. V + S'(k)] f '(r ,  k) 

- ~ g'(kh, k)nh(r)-- fdkT'(k',k)f'(r,k')} 
+ ~ [Zh(k)f'(r,k)--Z_h(k--Kh)f'(r,k--Kh)]=O, 

h ~ O  
(2.6) 

in which h - h '  refers to the reciprocal-lattice vector 
Kh_h,=Kh--Kh ,. The third group of terms in (2.6) 
describes the effect of the Bragg reflexion of neutrons 
which have already been diffusely scattered. This 
group of terms is different from zero only if k is in the 

neighbourhood of a Brillouin zone boundary and, 
except in special experimental arrangements, is of 
negligible importance in comparison with the second 
group of terms. In other words, there is a negligible 
probability that a diffusely scattered neutron has a 
wave vector k which satisfies the condition for Bragg 
reflexion. By neglecting the third group of terms we 
therefore assume that once a neutron has been diffusely 
scattered then any subsequent scattering collisions are 
also diffuse scatterings and not Bragg reflexions. In 
this case, diffuse scattering is equivalent to absorption 
as far as its effect on the attenuation of the transmitted 
and Bragg-reflected beams is concerned. It is for this 
reason that the quantity Z'(k), which is usually denoted 
by ~, is called the absorption coefficient even though it 
contains contributions from both true absorption and 
diffuse scattering. 

Thus, after omitting the third group of terms in (2.6), 
it follows that this equation can hold for an arbitrary 
value of k only if 

[~h.V+Z(kh)]nh(r)= ~" Zh_h,(kh,)nh,(r ), (2.7) 
h'( :~ h) 

and 

[~. V + 2"(k)] f '(r,  k) 

= ~ F ' ( k h ,  k)nh(r)+fdk'F ' (k ' ,k)f ' ( r ,k ' ) .  (2.8) 

The equations (2.7) will be called the generalized Darwin 
equations. These are a system of homogeneous linear 
equations which can be solved, subject to the boundary 
conditions given below, to determine the neutron 
number densities, nh(r), in the transmitted and Bragg- 
reflected beams. (2.8) is an inhomogeneous linear 
equation for the phase-space distribution function of 
the diffusely scattered neutrons. The inhomogeneous 
term in (2.8) is determined by the solution of (2.7) and 
its presence indicates that the transmitted and Bragg- 
reflected beams are each a source of diffuse scattering. 

In what follows, we shall assume that the shape of the 
crystal is such that its surface is nowhere concave. This 
restriction is convenient to avoid the possibility that a 
neutron re-enter the crystal after passing out through 
the surface. Let L(r,10 denote the distance from an 
arbitrary point r inside the crystal to the surface in the 
direction -l~ as illustrated in Fig. 1. Since the surface 

0 
Fig. 1. The quantity L(r,k). 
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is nowhere concave, the only neutrons which can enter 
the crystal from outside are the incident neutrons. Thus 
(2.7) must be solved subject to the boundary conditions 

nh[r  --  L(r, kh)~h] = 6hO n , (2.9) 

in which 6hO denotes the Kronecker delta and n the 
incident-neutron number density. The boundary con- 
dition for (2.8) is 

/ ' E r -  L(r, k)k, k] =0 .  (2.10) 
Let Ak denote the following linear integral operator: 

Ak[g(r)] -- d~ exp [ -  Z(k)~]g(r-  ~[0, (2.11) 

in which g(r) is an arbitrary function of r, and let A~ 
denote the corresponding operator when Z(k) is 
replaced by Z'(k). Then one can easily verify that the 
system of differential equations (2.7) and the boundary 
conditions (2.9) are together equivalent to the following 
system of integral equations: 

n h ( r ) = 6 h o n  exp [ -  f f , (kh)L(r,[ih)  ] 

+ ~ Sh_h,(kh,)Akh[nh,(r)]. (2.12) 
h'( :/: h) 

Similarly, the inhomogeneous integro-differential 
equation (2.8) and the boundary condition (2.10) are 
together equivalent to the following inhomogeneous 
Fredholm equation (cf Sears 1975a): 

f '(r ,  k) = ~ r'(kh, k)A'kEnh(r)] 
h 

+ fdk'F'(k',k)A'k[f'(r,k')]. (2.13) 

The quantities in which we are primarily interested 
are the transmissivity, T(ko), which is defined as the 
fraction of incident neutrons which are transmitted by 
the crystal when the incident-neutron wave vector is ko, 
and the reflectivity, Rh(ko), which is defined as the frac- 
tion of incident neutrons which are Bragg reflected via 
Kh when the incident-neutron wave vector is ko. 
Equivalently, T(ko) is the ratio of the transmitted 
current to the incident current and Rh(k0) the ratio of 
the reflected current to the incident current. The trans- 
missivity is given by 

1 ~ dS~. ~ono(r), (2.14) T(ko) = ~ ~sO, o) 

in which dS denotes an element of area at a point r on 
the surface of the crystal, ~ is a unit vector in the direc- 
tion of the outward normal to the surface at that point 
and S([~o) is that part of the surface of the crystal which 
is visible from the direction to. Since the surface is 
nowhere concave S(ko) is, more precisely, the subset of 
surface points r for which ~ . [o>0 .  Finally, A(ko) is 
the cross-sectional area of the crystal perpendicular 
to the direction to, 

A(~o) = .)s[ ~i,o) dS6" to.  (2.15) 

Similarly, the reflectivity is given for h 4:0 by 

1 I~ dS6. l~hnh(r). (2.1 Rh(ko) = nA(--Y(~o) ~o<kh> 6) 

The basic problem is to solve the generalized Darwin 
equations (2.7) or the equivalent integral equations 
(2.12) to determine nh(r) and, hence, to compute the 
transmissivity (2.14) and the reflectivity (2.16). The 
solution of the generalized Darwin equations can also 
be used in (2.8) to determine f ' (r ,k) and, hence, the 
double differential cross section for diffuse scattering 
(Sears, 1975a). 

As in the dynamical theory of neutron diffraction 
in a perfect crystal, the solution of the generalized 
Darwin equations for a mosaic crystal depends on the 
number of reciprocal-lattice points which lie on or near 
the surface of the Ewald sphere corresponding to ko. 
For the m-beam case, in which there are m such points, 
it follows with the help of (2.3) that (2.7) and (2.12) each 
reduce to a system of m coupled equations for the 
transmitted beam and the m -  1 Bragg-reflected beams. 
Thus, in the one-beam case, in which there are no 
Bragg-reflected beams, no(r) is simply attenuated 
exponentially by absorption and diffuse scattering 
inside the crystal. In the two-beam case (2.7) reduces 
to the familiar Darwin equations (Darwin, 1922) for 
the transmitted beam and the single Bragg-reflected 
beam. For m > 3  the generalized Darwin equations 
provide a basis for the discussion of parasitic reflexions 
and the Renninger effect in mosaic crystals. The three- 
beam case has been discussed by Moon & Shull (1964) 
for the special case of a plane slab. In the remainder of 
the present article we shall confine our attention to the 
two-beam case. 

3. The two-beam case 
Suppose the incident-neutron wave vector ko satisfies 
the condition for Bragg reflexion via one particular 
reciprocal-lattice vector Kh. In this case (2.7) reduces 
to the ordinary Darwin equations (Darwin, 1922), 

[ to.  V + S(ko)]no(r) = S-h(kh)rlh(r), 
(3.1) 

[kh. V + S(kh)]nh(r)= Zh(ko)no(r), 

in which 

Z(ko) = Zdko) + Z'(ko), 
(3.2) 

Z(k,) = Z_ h(kh) + S'(kh), 

and nh,(r )---0 if h'4=0,h. The corresponding integral 
equations (2.12) become 

no(r) = n exp [ -  Z(ko)L(r, ko)] + Z-h(kh)Ako[nh(r)], 
(3.3) 

nh(r) = Zh(ko)AkhEno(r)]- 
In what follows we shall adopt the abbreviated 

notation 
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T= T(ko), R= Rh(ko), 

Zh= Zh(ko), S - h =  ~ ' -  h(kh), (3.4) 

Ao = Ak O, A h = Akh. 

The coupled equations (3.3) can then be combined to 
give 

no(r)= n exp [-Z(ko)L(r, ko)] + Z_hZhAoAh[no(r)].  
(3.5) 

Similar integral equations have been obtained by 
other authors (Werner & Arrott, 1965; Werner, 1974; 
Becket & Coppens, 1974a). Apart from differences in 
notation, the main difference between the present work 
and that of the above authors is in the approximations 
used to evaluate the terms in the iterated solution of 
(3.5). The iterated solution of this equation gives the 
multiple-scattering expansion 

oo 

no(r) = ~ n(o2S)(r), (3.6) 
j=O 

in which n(o2S)(r) is the contribution to the transmitted 
beam from neutrons which have been Bragg reflected 
2j times and is given by the recursion relation 

Also, 

n(oZ/)(r ) = { n exp [ -  Z(ko)L(r,[%)], j = 0 ,  (3.7) 
Z-nXhAoAh[n(o zj- 2)(r)], j >  1. 

nh(r ) = ~ n(h 2j+ 1)(r), (3.8) 
j=o 

in which n(h 2j+ 1)(r) is the contribution to the Bragg- 
reflected beam from neutrons which have been Bragg 
reflected 2j + 1 times and is given by 

n(h 2j+ 1)(r)= ~,hAh[n~2J)(r)]. (3.9) 

The transmissivity (2.14) can therefore be expressed 
as 

oo 

T= ~ T(2J), (3.10) 
j=0 

in which 

T(2J ) V = A(---(~o)(Z-hZh)SHEs, (3.11) 

where Vis the volume of the crystal and 

1 
J s dSe'i%(A°Ahy{exp [ -  Z(k°)L(r'l%)]}" H2j = -V (ko) 

(3.12) 

The reflectivity (2.16) can likewise be expressed as 

R = ~ R (2j+ 1), (3.13) 
j=O 

in which 

V I J_ R(2)+ 1) = A(---~o) hff'~ + 1H2)+ t, (3.14) 

1 fsd, h)dS~.kh H2j+ 1 = 

× Ah(AoAh)J{exp [-Z(ko)L(r, ko)]}. (3.15) 

The evaluation of these quantities is facilitated by the 
general theorem 

J s[(i,) dS~''I~Ak[g(r)] = J [-V dr exp [ -  Z(k)L(r,- ~:)]g(r), 

l i b  

(3.16) 

from which it follows, for example, that 

HI=-~I ,jlvdr exp [ -  S(ko)L(r, [%) - Z(kh)L(r, --kh)] 

t ~  

(3.17) 

To the extent that p -Z ' (k)  is independent of k and 
Friedel's law is satisfied, so that £-h=Zh, it follows 
from (3.2) that 

Z(ko) = ~ ' (kh)= p + Sh, (3.18) 

and, hence, that 

HI=A(#+Zh), (3.19) 

where A(p) is the absorption factor, 

1 
j drexp {-p[L(r, ko)+L(r,-kh)]}. (3.20) A(p) = V _v 

In the kinematical theory of neutron diffraction, the 
reflectivity is given by 

Rk = Zht, (3.21) 

in which t = V/A(~o) is the average crystal thickness in 
the direction of the incident beam (Table 1). Hence, 

R(zj+ 1)__t~ 5-'2jL/ (3.22) 
- - a X k ~ - ' h  1 1 2 j +  1 • 

In particular, the contribution from single reflexions is 

R (1)= RkA(p + Zh). (3.23) 

The problem of calculating the transmissivity and 
reflectivity in the two-beam case is therefore reduced 
to evaluating the multi-dimensional integrals (3.12) 
and (3.15) for the transmission factors H. These quan- 

Table 1. The average crystal thickness in the direction 
of the incident beam, t, and the average path length of a 
singly-reflected neutron through the crystal, D,for crys- 

tals of various shapes 
The angles ~0 and q~' are defined in the Appendix. The values for the 
cylinder apply only to equatorial reflexions where the plane of 
scattering is perpendicular to the axis. 

Crystal shape Dimensions t D 
d 

plane slab thickness d d cosec q~ ~ (cosec ~o + cosec ~o') 

~z 16 
_ _  r a ,  b cylinder radius r ~ r 3n 

sphere radius r ~r ~r b 

and References: (a) Hamilton (1957). (b) Zachariasen (1965). 
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tities are special cases of more general transmission 
factors which also govern multiple diffuse scattering 
processes in macroscopic bodies (Sears, 1975a). They 
can be evaluated analytically for an infinite plane 
slab as discussed in the Appendix. An approximate 
model, which is applicable to a crystal of arbitrary 
shape, is presented in § 5. 

4. The extinction factor 

In general, S,n = Q W(O') where Q denotes the neutron 
Q-value and W(O') the normalized mosaic function. 
Here 0 ' = 0 - 0 n  where 0 is the angle of incidence on 
the Bragg planes and 0n the nominal Bragg angle. 
The kinematical reflectivity (3.21) can therefore be 
expressed in the form 

Rk=OkW(O'), (4.1) 

in which Ok is the integrated reflectivity in the kinemat- 
ical theory, 

t ~  

Ok ~ _j RkdO' = Qt. (4.2) 

Hence, it follows from (3.22) that 

R(2J+ 1)= OkQ2JHzj+ 1 W(O') 2j+ 1, (4.3) 

in which, according to (3.18), H2j+I is to be evaluated 
with 

Z(k0) = Z(kh)= tz + Q W(O'). (4.4) 

It then follows from (3.13) that the integrated reflec- 
tivity, 

t ~  

0 - JRdO', (4.5) 

can be expressed in the form 

e=ekE, (4.6) 

in which the factor E has a multiple-scattering ex- 
pansion of the form 

oo 
E = ~ E (2j+ 1), (4.7) 

)=0 

where E ~zJ+ 1) is the contribution from neutrons which 
have been Bragg reflected 2j + 1 times and is given by 

= Q2J_JHzj+ 1W(Ot) 2j+ ld0 ' .  (4.8) 
¢ l b  

E(2J+ 1) 

In particular, the single scattering (/'= 0) contribution 
is given, according to (3.19), by 

E (1) =fAE#+QW(O')]W(O')dO'. (4.9) 

The factor E describes the reduction in the integrated 
reflectivity due to the attenuation of the transmitted 
and Bragg-reflected beams inside the crystal which 
is neglected in the kinematical theory. The attenuation 
contains contributions, not only from absorption (i.e. 

true absorption and diffuse scattering), but also a self- 
consistent contribution from multiple Bragg reflexion 
(i.e. secondary extinction). If the latter contribution is 
neglected by putting Q=0  then E(I~=A(p) and 
E ( z J + I ) = 0  for j > l  with the result that E=A(p). In 
general, for Q ¢ 0, we can therefore write 

E -  A(p)E~, (4.10) 

in which the quantity Es, so defined, is called the 
secondary extinction factor. While the above distinc- 
tion between the absorption factor and the secondary 
extinction factor is clear and unambiguous and while 
there are good practical reasons for making such a 
distinction, particularly in X-ray diffraction, the 
distinction is nonetheless quite artificial since Es 
depends on #. From a physical point of view, the effects 
of absorption and secondary extinction on E are 
inextricable and the fundamental quantity is simply E. 
For lack of a better name, we shall sometimes call E the 
'extinction factor' even though this name is really 
appropriate only in the case of zero absorption (p = 0) 
where A(#)= 1 and E = Es. 

For a small crystal the absorption factor (3.20) can 
be evaluated by expanding the exponential with the 
result that (4.9) becomes 

E(')= 1-(Iz+gQ)D+O(L2), (4.11) 

in which L characterizes the linear dimensions of the 
crystal, D is the average path length of a singly re- 
flected neutron through the crystal and g is the Darwin 
g-value, 

g :  f W(O')2dO '. (4.12) 

The values of D for some simple crystal shapes are 
given in Table 1. Since E(zJ+I)=O(L 2j) for j>_l, it 
follows that likewise 

E= 1-(#+gQ)D+O(L2). (4.13) 

This result is of limited usefulness since the higher- 
order terms are often not negligible in practice. An 
approximate expression for E, which is valid beyond 
the linear region, is developed in the next section. 

5. Approximate theory of secondary extinction 

Since the detailed shape of W(O') is usually not known 
in practice, it is necessary to introduce a suitable 
model for this quantity. One such model is the 
Gaussian (Darwin, 1922), 

1 
W(0') = ~ exp ( -- 0'2/2r12), (5.1) 

for which 
1 0.282 

(5.2) 
g -  2VTc q - tl 

Alternatively, one might employ the step-function 
model (Hamilton, 1957), 
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1 
W(O')= 21/3r/' 10'l<l/3rt' 

=0 ,  IO'l >l/3r/,  (5.3) 

in which I/is again the standard deviation, 

rl 2 = f o'zw(O')dO ', (5.4) 

for which 
1 0.289 

g -  2 1 / 3 r / -  1/ ' (5.5) 

and differs from the previous value by only 29/o. Thus, 
it is evident from (4.13) that, at least to a first approx- 
imation, E is not sensitive to the precise shape of 
W(O'). Fig. 2 suggests that this is true quite generally. 
In what follows we shall employ the step-function 
model. The advantage of this model is that the integral 
(4.8) can then be performed analytically to give 

E(2J+ l) = (gQ)2JH2j+ 1, (5.6) 

for j > 0  in which the transmission factor Hzj+I is t o  
be evaluated with S(k)--# + gQ and is given for a crys- 
tal of arbitrary size and shape by the (2j+ 3)-dimen- 
sional integral (3.15). 

In §6 of a recent article (Sears, 1975a) we have 
introduced an approximate, analytical method for 
calculating the corresponding transmission factors 
which govern multiple diffuse scattering in liquids. The 
method has been applied in the calculation of multiple 
scattering corrections for slow-neutron inelastic scat- 
tering experiments on liquid neon (Sears, 1975a; 
Buyers, Sears, Lonngi & Lonngi, 1975) and liquid 
helium (Sears, 1975b; Martel, Svensson, Woods, Sears 
& Cowley, 1976; Svensson, Martel, Sears & Woods, 
1976). In the present context it gives an expression of 
the following form, which we shall refer to as the 
'factor model', 

22J 
H 2 j + ,  - (2j + 1)[ Hl[B(k°)B(kh)]g' (5.7) 

1.0 
I,,iJ 

n,- 
0 0 . 8  

z 0 . 6  
0 
I -  

z 
0.4 

w 

g o.z 

_• I I I 

STEP- FUNCTION 
MOSAIC 

o.c I I I I 
0.0 0.4 0.8 1.2 1.6 2.0 

got 
Fig. 2. Secondary extinction factor for an infinite plane slab in the 

case of zero absorption. The results are for the symmetric Bragg 
case and show a comparison of the Gaussian and step-function 
models for W(O'). 

in which 

B(k) - P ~  {1 - e x p  I - q ( #  +gQ)L([0]} (5.8) # + g Q  

where L([k) is the maximum crystal thickness in the 
direction _+ k. It has been shown (Sears, 1975a) that the 
factor model (5.7) satisfies exact upper and lower 
bounds if 0 < p < 1 and 0 < pq < 1. The optimum values 
of p and q were determined in the above reference by 
fitting the factor model for H2 to analytical results for 
the small-sample limit. The resulting numerical values 
for p and q (Table 2) are independent of the size of the 
crystal and depend only weakly on its shape. Thus, all 
the information about the size and shape of the crystal 
is essentially contained in L(k). Hence it follows, with 
the help of (3.19), that for j > 0 ,  

E (zs+ 1)=A(la+gQ) ~2s 
(2j+ 1)!' (5.9) 

in which 
0 = 2gQV[B(ko)B(kh) ] . (5.10) 

The multiple scattering expansion (4.7) can therefore 
be summed to give 

sinh ~b 
E= A(# + gQ) - - ~  (5.11) 

Let us first consider an infinite plane slab (see Appen- 
dix) for which the parameters in the factor model are 
given by 

L([%) = d cosec ~0, p = ~, 
(5.12) 

L(kh) = d cosec ~0', q = 2. 

The coefficients as in equation (A. 5) of the Appendix 
can be obtained for the factor model by noting that 
E = R/gQt. The resulting values of as are those labelled 
'approximate' in Table 3. Comparing these approx- 
imate values with the corresponding exact values, we 
note first that as is given correctly by the factor model 
for s<  1 in the Bragg case and for s < 2  in the Laue 
case. Although discrepancies occur for larger values of 
s, it is evident that (at least up to s = 3) the factor model 
is asymptotically exact in the limit ~< 1, where as= 
1/(s + 1)!, and also in the limit ~ >> 1, where as = ~S/(s + 1)!. 

The factor model is least accurate for symmetric 
reflexions where ~= 1. Fig. 3 shows a comparison of 
the factor model with the exact results for symmetric 
reflexions obtained in the Appendix and with the first- 

Table 2. Numerical values of the parameters p and q in 
the factor model (5.8) 

The values for the cylinder apply only to equatorial reflexions where 
the plane of scattering is perpendicular to the axis. 

Crystal shape p q 
plane slab 0.750 0-667 
cylinder 0.644 0.659 
sphere 0"592 0-633 
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Fig. 3. Secondary extinction factor for an infinite plane slab with 
a step-function mosaic for the case of zero absorption and symme- 
tric reflexion geometry. The figure shows a comparison of the 
factor model (5.11) with the exact result obtained from ( ,4 .6)  and 
with the first-order theory (4.13). 

order theory (4.13). It is evident that the first-order 
theory is accurate for gQt < 0-1 and the factor model for 
gQt<0.5. For larger values of gQt the factor model 
underestimates E and, hence, overestimates the amount 
of secondary extinction. 

For equatorial reflexions from a cylinder of radius r 
the parameters in the factor model are given by 

16 3n 16 (5.13) 
L(ko) = L([~h) = 2r, p = 9n 2 _ 64' q -- 4 3n" 

Fig. 4 shows a comparison of the factor model with the 
results obtained by Hamilton (1963) from a numerical 
solution of the Darwin equations for equatorial re- 
fexions from a cylinder. The results of the first-order 
theory (4.13) are also shown. These results refer, again, 
to the case of zero absorption and a step-function 
mosaic. The discrepancies in Fig. 4 are very. similar 
to those in Fig. 3. 

For all reflexions from a sphere of radius r the 
parameters in the factor model are given by 

L(ko)=L(kh)=2r, P=~6, q=~-~. (5.14) 

Fig. 5 shows a comparison of the factor model with 
the approximate theory of Becker & Coppens (1974a) 
for a sphere. These results also refer to the case of zero 
absorption. In both Fig. 4 and Fig. 5, the factor A(gQ) 
in (5.11) was obtained from International Tables for 
X-ray Crystallography (Kasper & Lonsdale, 1959). 
Becker & Coppens's results are for a Gaussian mosaic 
whereas the factor model results are, as before, for a 
step-function mosaic. The results of the first-order 

theory (4.13) are also shown. The discrepancies are 
larger in Fig. 5 than in Figs. 3 and 4. It is evident from 
Fig. 2 that the larger discrepancies can reasonably be 
attributed to the fact that Becker & Coppens's results 
refer to a Gaussian mosaic while all the others are for 
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Fig. 4. Secondary extinction factor for a cylinder of radius r with 
a step-function mosaic for the case of zero absorption. The figure 
shows a comparison of the factor model (5.11) with the results of 
Hamilton (1963) and with the first-order theory (4.13). 
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Fig. 5. Secondary extinction factor for a sphere of radius r for the 
case of zero absorption. The figure shows a comparison of the 
factor model (5.11) for  a step-function mosaic with the results of 
Becker & Coppens (1974a) for a Gaussian mosaic and with the 
first-order theory (4.13). 
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a step-function mosaic. Otherwise, the results in Fig. 5 
are very similar to those in Figs. 3 and 4. 

It is apparent from Figs. 3, 4 and 5 that as long as the 
secondary extinction is moderately weak (E > 0.6, say), 
which is usually the case for the small crystals employed 
in crystal-structure determinations, the factor model 
provides an accurate estimate of the secondary extinc- 
tion factor regardless of the shape of the crystal. The 
error is typically < 4 ~ .  The main advantage of the 
factor model is that it provides a simple analytical 
expression for E rather than simply a table of numer- 
ical values. This may be especially useful for computing 
purposes in structure refinements. 

For severe secondary extinction (E <0.6) the factor 
model consistently overestimates the amount of 
secondary extinction although it remains qualitatively 
correct. In this region the secondary extinction factor 
is increasingly dependent on the detailed shape of 
W(O') so that existing tables of secondary extinction 
factors, which are calculated on the basis of a specific 
model for W(O'), are likewise of limited usefulness for 
quantitative purposes (see Fig. 2). On the other hand, 
such severe secondary extinction is normally en- 
countered only in neutron-monochromator crystals. 
Such crystals are usually in the form of plane slabs for 
which analytical solutions of the Darwin equations are 
available. 

A preliminary account of this work was presented 
at the Gatlinburg Conference on Neutron Scattering, 
6-10 June 1976. Discussions with Dr A. D. B. Woods, 
Dr G. Dolling, Dr W. J. L. Buyers and Dr B. M. 
Powell are gratefully acknowledged. 

and Bragg reflexion, can be calculated exactly for an 
infinite plane slab for all j. The results are given in a 
recent article (Sears, 1975a) in the form of an algebraic 
recursion relation. With increasing j, the explicit ex- 
pressions for Hj rapidly become unwieldly and we shall 
therefore confine our attention to H1 and H3 which 
determine the first two terms in (3.13). The results are: 

H, = 1 - e x p  [ - ( ( +  1)x] 
(¢ + 1)x (B), 

e-X_ e-gX 
(L) 

( ~ -  1)x (A.1) 

and 

H 3  = ( ~ +  1)aXZ2 { 1 - 2 ( { +  1)x exp [ - ( ( +  1)x] 

- e x p  [ - 2 ( ~ +  1)x]} (B), 

= ( ( _  1)3xS 2 { [ ( ( -  1 ) x - 2 ] e  -x 

+ [ ( ( -  1)x + 2]e -¢x} (L). (A.2) 

Here (B) denotes the Bragg case (reflexion geometry) 
and (L) the Laue case (transmission geometry). Also, 
( =  sin q~/sin q~' where q~ and q~' are the angles which the 
incident and reflected beams make with the surface 
of the slab. Finally, x=Nd cosec q~ where I ;=p+2~h 
and d is the thickness of the slab. Hence it follows from 
(3.22) that in the case of zero absorption, where p = 0 
so that S = Sh and x = Rk, 

APPENDIX 
Infinite plane slab 

The transmission factors H~, which govern the mul- 
tiple scattering expansions for both diffuse scattering 

Rt~)_ 1 { l _ e x p [ _ ( ( + l ) R k ] }  (B), 
( + 1  

_ 1 {exp(--Rk)--exp(--~Rk)} (L), (A 3) ~ - 1  

Table 3. 7he coefficients as in the expansion (A. 5) of the reflectivity of an infinite plane slab in the case of 
zero absorption 

The exact values are from (A. 6) and the approximate values from the factor model (§5). 

Reflexion 
type 

asymmetric 

symmetric (( = 1) 

Bragg case Laue case 
s exact approximate exact approximate 
0 1 1 1 1 

1 1 1 1 
1 ~ ( ~ + 1 )  ~ ( ~ + 1 )  2~ (~+1) z : ( ~ + l )  

1 1 1 2 1 2 ~.v ((2 + 4 ( +  1) ~. ((2 + 3 ( +  1) ~.v ( (+  1) ~.T ( (+  1)2 

5 5 3 ~(~+1)(~2+10~+1) . (~+1)(~2+~6~+1)-r~ . (~+ 1)3 ~(~+1)(~ ~ 1  +~°~+l)-r~ 

0 1 1 1 1 
i 1 1 i 1 
2 1 5/6 2/3 2/3 
3 1 11/18 1/3 4/9 
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and 

R (3) = (~+ 1) 3 { 1 - 2 ( ~ +  1)Rk exp [ - - (~+  1)Rk] 

--exp [ - -2 (~+  1)Rk]} (B), 

(~_ 1) 3 {[ (~-  1)Rk--2] exp (--Rk) 

+[ (~- -  1)Rk + 2] exp (-- ~Rk)} (L). (A. 4) 

Since R(2J+I)=O(R 2j+1) the expansions of R (1) and 
R (3) in powers of Rk can be substituted into (3.13) to 
determine the coefficients as for s < 3 in the expansion 

R= ~ (-)SasR~,+ 1 (A.5) 
s=0 

The resulting values of as are those labelled 'exact' in 
Table 3. (The other entries in this table are from the 
approximate theory in §5). It will be noted that the 
difference between the Bragg and Laue cases begins 
at the s = 2 term. 

On the other hand, the Darwin equations (3.1) can 
be solved directly for an infinite plane slab. In the case 
of zero absorption the resulting expressions for the 
reflectivity are 

R = exp [(1-- 0Rk] -- 1 (B), 
exp [ (1- -ORk]- - (  

_ 1 { 1 - - e x p [ - - ( l + 0 R k ] }  (L). (A 6) 
1+( 

When these expressions are expanded in the form 
(A. 5) we find the same coefficients as as before. This 
verifies that the multiple-scattering solution of the 
integral form of the Darwin equations is equivalent to 
the direct solution of the corresponding differential 
equations. For symmetric reflexions (~= 1) equation 
(A.6) reduces to the well-known results of Bacon & 
Lowde (1948). 
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